A new approach for solving the first-order linear matrix differential equations

نویسندگان

  • A. Golbabai School of Mathematics‎, ‎Iran‎ ‎University of Science and Technology‎, ‎P‎.‎O‎. ‎Box 16846-13114‎, ‎Tehran‎, ‎Iran.
  • D. K. Salkuyeh Faculty of Mathematical Sciences‎, ‎University of Guilan‎, ‎Rasht‎, ‎Iran
  • S. P. A. Beik School of Mathematics‎, ‎Iran‎ ‎University of Science and Technology‎, ‎P‎.‎O‎. ‎Box 16846-13114‎, ‎Tehran‎, ‎Iran
چکیده مقاله:

Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solving the obtained coupled linear matrix equations. Numerical experiments are presented to demonstrate the applicably and efficiency of our method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach for solving the first-order linear matrix differential equations

abstract. the main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. properties of the legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. afterwards, an iterative algorithm is examined for solvin...

متن کامل

Bernoulli matrix approach for matrix differential models of first-order

The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...

متن کامل

A NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.  

متن کامل

A new approach for solving fuzzy linear Volterra integro-differential equations

In this paper, a  fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong  generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method  and other numerical methods.Error ana...

متن کامل

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره 2

صفحات  297- 314

تاریخ انتشار 2016-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023